Gluing theorem for random unitaries [Schuster, Haferkamp, Huang, QIP 2025] have found numerous applications, including designing low depth random unitaries [Schuster, Haferkamp, Huang, QIP 2025], random unitaries in ${\sf QAC0}$ [Foxman, Parham, Vasconcelos, Yuen'25] and generically shortening the key length of pseudorandom unitaries [Ananth, Bostanci, Gulati, Lin EUROCRYPT'25]. We present an alternate method of combining Haar random unitaries from the gluing lemma from [Schuster, Haferkamp, Huang, QIP 2025] that is secure against adversaries with inverse query access to the joined unitary. As a consequence, we show for the first time that strong pseudorandom unitaries can generically have their length extended, and can be constructed using only $O(n^{1/c})$ bits of randomness, for any constant $c$, if any family of strong pseudorandom unitaries exists.
翻译:暂无翻译