In this research, an integrated detection model, Swin-transformer-YOLOv5 or Swin-T-YOLOv5, was proposed for real-time wine grape bunch detection to inherit the advantages from both YOLOv5 and Swin-transformer. The research was conducted on two different grape varieties of Chardonnay (always white berry skin) and Merlot (white or white-red mix berry skin when immature; red when matured) from July to September in 2019. To verify the superiority of Swin-T-YOLOv5, its performance was compared against several commonly used/competitive object detectors, including Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5. All models were assessed under different test conditions, including two different weather conditions (sunny and cloudy), two different berry maturity stages (immature and mature), and three different sunlight directions/intensities (morning, noon, and afternoon) for a comprehensive comparison. Additionally, the predicted number of grape bunches by Swin-T-YOLOv5 was further compared with ground truth values, including both in-field manual counting and manual labeling during the annotation process. Results showed that the proposed Swin-T-YOLOv5 outperformed all other studied models for grape bunch detection, with up to 97% of mean Average Precision (mAP) and 0.89 of F1-score when the weather was cloudy. This mAP was approximately 44%, 18%, 14%, and 4% greater than Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5, respectively. Swin-T-YOLOv5 achieved its lowest mAP (90%) and F1-score (0.82) when detecting immature berries, where the mAP was approximately 40%, 5%, 3%, and 1% greater than the same. Furthermore, Swin-T-YOLOv5 performed better on Chardonnay variety with achieved up to 0.91 of R2 and 2.36 root mean square error (RMSE) when comparing the predictions with ground truth. However, it underperformed on Merlot variety with achieved only up to 0.70 of R2 and 3.30 of RMSE.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员