Evolutionary Algorithms (EAs) have become the most popular tool for solving widely-existed multi-objective optimization problems. In Multi-Objective EAs (MOEAs), there is increasing interest in using an archive to store non-dominated solutions generated during the search. This approach can 1) mitigate the effects of population oscillation, a common issue in many MOEAs, and 2) allow for the use of smaller, more practical population sizes. In this paper, we analytically show that the archive can even further help MOEAs through reusing its solutions during the process of new solution generation. We first prove that using a small population size alongside an archive (without incorporating archived solutions in the generation process) may fail on certain problems, as the population may remove previously discovered but promising solutions. We then prove that reusing archive solutions can overcome this limitation, resulting in at least a polynomial speedup on the expected running time. Our analysis focuses on the well-established SMS-EMOA algorithm applied to the commonly studied OneJumpZeroJump problem as well as one of its variants. We also show that reusing archive solutions can be better than using a large population size directly. Finally, we show that our theoretical findings can generally hold in practice by experiments on well-known practical optimization problems -- multi-objective 0-1 Knapsack, TSP, QAP and NK-landscape problems -- with realistic settings.


翻译:进化算法已成为解决广泛存在的多目标优化问题最流行的工具。在多目标进化算法中,利用存档存储搜索过程中产生的非支配解日益受到关注。该方法能够:1)缓解许多MOEA中常见的种群振荡效应;2)允许使用更小、更实用的种群规模。本文通过理论分析证明,在新解生成过程中重用存档解能进一步帮助MOEA。我们首先证明,仅使用小规模种群配合存档(未在生成过程中利用存档解)可能在某些问题上失效,因为种群可能丢弃先前发现但具有潜力的解。随后证明重用存档解可突破此限制,在期望运行时间上至少实现多项式级加速。我们的分析聚焦于经典SMS-EMOA算法在广泛研究的OneJumpZeroJump问题及其变体上的表现。同时证明,重用存档解可能优于直接使用大规模种群。最后,通过对多目标0-1背包、TSP、QAP和NK-landscape等经典实际优化问题在现实参数设置下的实验,验证了理论结论的普适性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员