In this paper we give the detailed error analysis of two algorithms (denoted as $W_1$ and $W_2$) for computing the symplectic factorization of a symmetric positive definite and symplectic matrix $A \in \mathbb R^{2n \times 2n}$ in the form $A=LL^T$, where $L \in \mathbb R^{2n \times 2n}$ is a symplectic block lower triangular matrix. Algorithm $W_1$ is an implementation of the $HH^T$ factorization from [Dopico et al., 2009]. Algorithm $W_2$, proposed in [Bujok et al., 2023], uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrix blocks that appear during the factorization. We prove that Algorithm $W_2$ is numerically stable for a broader class of symmetric positive definite matrices $A \in \mathbb R^{2n \times 2n}$, producing the computed factors $\tilde L$ in floating-point arithmetic with machine precision $u$, such that $||A-\tilde L {\tilde L}^T||_2= {\cal O}(u ||A||_2)$. However, Algorithm $W_1$ is unstable in general for symmetric positive definite and symplectic matrix $A$. This was confirmed by numerical experiments in [Bujok et al., 2023]. In this paper we give corresponding bounds also for Algorithm $W_1$ that are weaker, since we show that the factorization error depends on the size of the inverse of the principal submatrix $A_{11}$. The tests performed in MATLAB illustrate that our error bounds for considered algorithms are reasonably sharp.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月22日
VIP会员
相关VIP内容
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员