Force perception on medical instruments is critical for understanding the mechanism between surgical tools and tissues for feeding back quantized force information, which is essential for guidance and supervision in robotic autonomous surgery. Especially for continuous curvilinear capsulorhexis (CCC), it always lacks a force measuring method, providing a sensitive, accurate, and multi-dimensional measurement to track the intraoperative force. Furthermore, the decoupling matrix obtained from the calibration can decorrelate signals with acceptable accuracy, however, this calculating method is not a strong way for thoroughly decoupling under some sensitive measuring situations such as the CCC. In this paper, a three-dimensional force perception method on capsulorhexis forceps by installing Fiber Bragg Grating sensors (FBGs) on prongs and a signal decoupling method combined with FASTICA is first proposed to solve these problems. According to experimental results, the measuring range is up to 1 N (depending on the range of wavelength shifts of sensors) and the resolution on x, y, and z axial force is 0.5, 0.5, and 2 mN separately. To minimize the coupling effects among sensors on measuring multi-axial forces, by unitizing the particular parameter and scaling the corresponding vector in the mixing matrix and recovered signals from FastICA, the signals from sensors can be decorrelated and recovered with the errors on axial forces decreasing up to 50% least. The calibration and calculation can also be simplified with half the parameters involved in the calculation. Experiments on thin sheets and in vitro porcine eyes were performed, and it was found that the tearing forces were stable and the time sequence of tearing forceps was stationary or first-order difference stationary during roughly circular crack propagating.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2020年12月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员