In this paper, we study fast first-order algorithms that approximately solve linear programs (LPs). More specifically, we apply algorithms from online linear programming to offline LPs and derive algorithms that are free of any matrix multiplication. To further improve the applicability of the proposed methods, we propose a variable-duplication technique that achieves $\mathcal{O}(\sqrt{mn/K})$ optimality gap by copying each variable $K$ times. Moreover, we identify that online algorithms can be efficiently incorporated into a column generation framework for large-scale LPs. Finally, numerical experiments show that our proposed methods can be applied either as an approximate direct solver or as an initialization subroutine in frameworks of exact LP solving.


翻译:在本文中,我们研究大约解决线性程序(LPs)的快速一阶算法。更具体地说,我们将在线线性编程的算法应用到离线性编程中下线性编程,并推算出不包含任何矩阵乘法的算法。为了进一步改善拟议方法的适用性,我们建议了一种可变的重复技术,通过复制每个变量的1K美元来达到1美元的最佳性差距。此外,我们确定在线算法可以有效地纳入大型 LPs的柱体生成框架。最后,数字实验表明,我们拟议的方法可以作为近似直接解答器或作为精确的LP解算框架中的初始化子例程。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员