In a temporal network with discrete time-labels on its edges, entities and information can only ``flow'' along sequences of edges whose time-labels are non-decreasing (resp. increasing), i.e. along temporal (resp. strict temporal) paths. Nevertheless, in the model for temporal networks of [Kempe, Kleinberg, Kumar, JCSS, 2002], the individual time-labeled edges remain undirected: an edge $e=\{u,v\}$ with time-label $t$ specifies that ``$u$ communicates with $v$ at time $t$''. In this paper we make a first attempt to understand how the direction of information flow on one edge can impact the direction of information flow on other edges. More specifically, naturally extending the classical notion of a transitive orientation in static graphs, we introduce the fundamental notion of a temporal transitive orientation and we systematically investigate its algorithmic behavior. An orientation of a temporal graph is called temporally transitive if, whenever $u$ has a directed edge towards $v$ with time-label $t_1$ and $v$ has a directed edge towards $w$ with time-label $t_2\geq t_1$, then $u$ also has a directed edge towards $w$ with some time-label $t_3\geq t_2$. If we just demand that this implication holds whenever $t_2 > t_1$, we call the orientation strictly temporally transitive, as it is based on the strict directed temporal path from $u$ to $w$. Our main result is a conceptually simple, yet technically quite involved, polynomial-time algorithm for recognizing whether a given temporal graph $\mathcal{G}$ is transitively orientable. In wide contrast we prove that, surprisingly, it is NP-hard to recognize whether $\mathcal{G}$ is strictly transitively orientable. Additionally we introduce and investigate further related problems to temporal transitivity, notably among them the temporal transitive completion problem, for which we prove both algorithmic and hardness results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
21+阅读 · 2023年7月12日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年5月25日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员