Consider the following stochastic matching problem. Given a graph $G=(V, E)$, an unknown subgraph $G_p = (V, E_p)$ is realized where $E_p$ includes every edge of $E$ independently with some probability $p \in (0, 1]$. The goal is to query a sparse subgraph $H$ of $G$, such that the realized edges in $H$ include an approximate maximum matching of $G_p$. This problem has been studied extensively over the last decade due to its numerous applications in kidney exchange, online dating, and online labor markets. For any fixed $\epsilon > 0$, [BDH STOC'20] showed that any graph $G$ has a subgraph $H$ with $\text{quasipoly}(1/p) = (1/p)^{\text{poly}(\log(1/p))}$ maximum degree, achieving a $(1-\epsilon)$-approximation. A major open question is the best approximation achievable with $\text{poly}(1/p)$-degree subgraphs. A long line of work has progressively improved the approximation in the $\text{poly}(1/p)$-degree regime from .5 [BDH+ EC'15] to .501 [AKL EC'17], .656 [BHFR SODA'19], .666 [AB SOSA'19], .731 [BBD SODA'22] (bipartite graphs), and most recently to .68 [DS '24]. In this work, we show that a $\text{poly}(1/p)$-degree subgraph can obtain a $(1-\epsilon)$-approximation for any desirably small fixed $\epsilon > 0$, achieving the best of both worlds. Beyond its quantitative improvement, a key conceptual contribution of our work is to connect local computation algorithms (LCAs) to the stochastic matching problem for the first time. While prior work on LCAs mainly focuses on their out-queries (the number of vertices probed to produce the output of a given vertex), our analysis also bounds the in-queries (the number of vertices that probe a given vertex). We prove that the outputs of LCAs with bounded in- and out-queries (in-n-out LCAs for short) have limited correlation, a property that our analysis crucially relies on and might find applications beyond stochastic matchings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2019年3月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员