Social media platforms are often blamed for exacerbating political polarization and worsening public dialogue. Many claim that hyperpartisan users post pernicious content, slanted to their political views, inciting contentious and toxic conversations. However, what factors are actually associated with increased online toxicity and negative interactions? In this work, we explore the role that partisanship and affective polarization play in contributing to toxicity both on an individual user level and a topic level on Twitter/X. To do this, we train and open-source a DeBERTa-based toxicity detector with a contrastive objective that outperforms the Google Jigsaw Perspective Toxicity detector on the Civil Comments test dataset. Then, after collecting 89.6 million tweets from 43,151 Twitter/X users, we determine how several account-level characteristics, including partisanship along the US left-right political spectrum and account age, predict how often users post toxic content. Fitting a Generalized Additive Model to our data, we find that the diversity of views and the toxicity of the other accounts with which that user engages has a more marked effect on their own toxicity. Namely, toxic comments are correlated with users who engage with a wider array of political views. Performing topic analysis on the toxic content posted by these accounts using the large language model MPNet and a version of the DP-Means clustering algorithm, we find similar behavior across 5,288 individual topics, with users becoming more toxic as they engage with a wider diversity of politically charged topics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员