This paper proposes DisCo, an automatic deep learning compilation module for data-parallel distributed training. Unlike most deep learning compilers that focus on training or inference on a single device, DisCo optimizes a DNN model for distributed training over multiple GPU machines. Existing single-device compilation strategies do not work well in distributed training, due mainly to communication inefficiency that they incur. DisCo generates optimized, joint computation operator and communication tensor fusion strategies to enable highly efficient distributed training. A GNN-based simulator is built to effectively estimate per-iteration training time achieved by operator/tensor fusion candidates. A backtracking search algorithm is driven by the simulator, navigating efficiently in the large strategy space to identify good operator/tensor fusion strategies that minimize distributed training time. We compare DisCo with existing DL fusion schemes and show that it achieves good training speed-up close to the ideal, full computation-communication overlap case.


翻译:本文提出Disco,这是数据平行分布式培训的自动深学习汇编模块。Disco与大多数侧重于单一设备培训或推断的深学习汇编者不同,Disco优化了多台GPU机器分布式培训的DNN模式。现有的单设备汇编战略在分布式培训中效果不佳,主要原因是它们产生的沟通效率低下。Disco生成了优化、联合计算操作员和通信聚合战略,以便能够高效分布式培训。GNN模拟器的建立是为了有效估计操作员/加速聚变候选人完成的渗透式培训时间。由模拟器驱动的回溯跟踪搜索算法,在大型战略空间中高效地导航,以确定良好的操作员/加速聚变战略,最大限度地减少分布式培训时间。我们比较Disco与现有的DL聚变计划,并表明它能够实现与理想、全面计算-通信重叠案例相近的良好培训速度。

0
下载
关闭预览

相关内容

编译器(Compiler),是一种计算机程序,它会将用某种编程语言写成的源代码(原始语言),转换成另一种编程语言(目标语言)。
专知会员服务
54+阅读 · 2020年11月3日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
0+阅读 · 2022年11月1日
Arxiv
16+阅读 · 2022年11月1日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年11月3日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员