In the literatur there exist approximation methods for McKean-Vlasov stochastic differential equations which have a computational effort of order $3$. In this article we introduce full-history recursive multilevel Picard (MLP) approximations for McKean-Vlasov stochastic differential equations. We prove that these MLP approximations have computational effort of order $2+$ which is essentially optimal in high dimensions.


翻译:在里特拉图尔,麦肯-弗拉索夫(McKan-Vlasov)的随机差异方程式有近似方法,这些方程式的计算努力量为3美元。在本篇文章中,我们为麦肯-弗拉索夫(McKan-Vlassov)的随机差异方程式引入了全历史循环多级Picard(MLP)近似值。我们证明这些MLP的近似值的计算努力量为2美元+美元,在高维度中基本上是最理想的。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员