For a real matrix $A \in \mathbb{R}^{d \times n}$ with non-collinear columns, we show that $n \leq O(d^4 \kappa_A)$ where $\kappa_A$ is the \emph{circuit imbalance measure} of $A$. The circuit imbalance measure $\kappa$ is a real analogue of $\Delta$-modularity for integer matrices, satisfying $\kappa_A \leq \Delta_A$ for integer $A$. The circuit imbalance measure has numerous applications in the context of linear programming (see Ekbatani, Natura and V{\'e}gh (2022) for a survey). Our result generalizes the $O(d^4 \Delta_A)$ bound of Averkov and Schymura (2023) for integer matrices and provides the first polynomial bound holding for all parameter ranges on real matrices. To derive our result, similar to the strategy of Geelen, Nelson and Walsh (2021) for $\Delta$-modular matrices, we show that real representable matroids induced by $\kappa$-bounded matrices are minor closed and exclude a rank $2$ uniform matroid on $O(\kappa)$ elements as a minor (also known as a line of length $O(\kappa)$). As our main technical contribution, we show that any simple rank $d$ complex representable matroid which excludes a line of length $l$ has at most $O(d^4 l)$ elements. This complements the tight bound of $(l-3)\binom{d}{2} + d$ for $l \geq 4$, of Geelen, Nelson and Walsh which holds when the rank $d$ is sufficiently large compared to $l$ (at least doubly exponential in $l$).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员