Reusing existing neural-network components is central to research efficiency, yet discovering, extracting, and validating such modules across thousands of open-source repositories remains difficult. We introduce NN-RAG, a retrieval-augmented generation system that converts large, heterogeneous PyTorch codebases into a searchable and executable library of validated neural modules. Unlike conventional code search or clone-detection tools, NN-RAG performs scope-aware dependency resolution, import-preserving reconstruction, and validator-gated promotion -- ensuring that every retrieved block is scope-closed, compilable, and runnable. Applied to 19 major repositories, the pipeline extracted 1,289 candidate blocks, validated 941 (73.0%), and demonstrated that over 80% are structurally unique. Through multi-level de-duplication (exact, lexical, structural), we find that NN-RAG contributes the overwhelming majority of unique architectures to the LEMUR dataset, supplying approximately 72% of all novel network structures. Beyond quantity, NN-RAG uniquely enables cross-repository migration of architectural patterns, automatically identifying reusable modules in one project and regenerating them, dependency-complete, in another context. To our knowledge, no other open-source system provides this capability at scale. The framework's neutral specifications further allow optional integration with language models for synthesis or dataset registration without redistributing third-party code. Overall, NN-RAG transforms fragmented vision code into a reproducible, provenance-tracked substrate for algorithmic discovery, offering a first open-source solution that both quantifies and expands the diversity of executable neural architectures across repositories.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员