Nonlinear feedback design via state-dependent Riccati equations is well established but unfeasible for large-scale systems because of computational costs. If the system can be embedded in the class of linear parameter-varying (LPV) systems with the parameter dependency being affine-linear, then the nonlinear feedback law has a series expansion with constant and precomputable coefficients. In this work, we propose a general method to approximating nonlinear systems such that the series expansion is possible and efficient even for high-dimensional systems. We lay out the stabilization of incompressible Navier-Stokes equations as application, discuss the numerical solution of the involved matrix-valued equations, and confirm the performance of the approach in a numerical example.


翻译:通过状态依赖Riccati方程的非线性反馈设计已有深入研究,但由于计算成本过高,难以应用于大型系统。如果系统能够嵌入具有仿射线性参数依赖关系的线性参数变化(LPV)系统类别中,则非线性反馈定律具有常数和可预先计算系数的级数展开式。在本工作中,我们提出了一种通用的方法来近似非线性系统,使得级数展开式即使在高维系统中也是可能且有效的。我们提出了通过数值解求解所涉及的矩阵值方程的不可压纳维-斯托克斯方程的稳定化应用,并在一个数值示例中验证了该方法的性能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员