We propose a mixed precision Jacobi algorithm for computing the singular value decomposition (SVD) of a dense matrix. After appropriate preconditioning, the proposed algorithm computes the SVD in a lower precision as an initial guess, and then performs one-sided Jacobi rotations in the working precision as iterative refinement. By carefully transforming a lower precision solution to a higher precision one, our algorithm achieves about 2 times speedup on the x86-64 architecture compared to the usual one-sided Jacobi SVD algorithm in LAPACK, without sacrificing the accuracy.


翻译:我们建议使用混合精密的雅各比算法来计算密质矩阵的单值分解(SVD ) 。 在经过适当的先决条件后,提议的算法将SVD以低精度计算为初步猜测,然后在工作精度中进行单向雅各比交替,作为迭接精细化。通过仔细将低精度的解算法转换为更精准的解算法,我们的算法比LAPACK中通常的单向雅各比 SVD 算法加快了2倍左右,同时不牺牲准确性。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员