We study core-set construction algorithms for the task of Diversity Maximization under fairness/partition constraint. Given a set of points $P$ in a metric space partitioned into $m$ groups, and given $k_1,\ldots,k_m$, the goal of this problem is to pick $k_i$ points from each group $i$ such that the overall diversity of the $k=\sum_i k_i$ picked points is maximized. We consider two natural diversity measures: sum-of-pairwise distances and sum-of-nearest-neighbor distances, and show improved core-set construction algorithms with respect to these measures. More precisely, we show the first constant factor core-set w.r.t. sum-of-pairwise distances whose size is independent of the size of the dataset and the aspect ratio. Second, we show the first core-set w.r.t. the sum-of-nearest-neighbor distances. Finally, we run several experiments showing the effectiveness of our core-set approach. In particular, we apply constrained diversity maximization to summarize a set of timed messages that takes into account the messages' recency. Specifically, the summary should include more recent messages compared to older ones. This is a real task in one of the largest communication platforms, affecting the experience of hundreds of millions daily active users. By utilizing our core-set method for this task, we achieve a 100x speed-up while losing the diversity by only a few percent. Moreover, our approach allows us to improve the space usage of the algorithm in the streaming setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员