We construct $3$-query relaxed locally decodable codes (RLDCs) with constant alphabet size and length $\tilde{O}(k^2)$ for $k$-bit messages. Combined with the lower bound of $\tildeΩ(k^3)$ of [Alrabiah, Guruswami, Kothari, Manohar, STOC 2023] on the length of locally decodable codes (LDCs) with the same parameters, we obtain a separation between RLDCs and LDCs, resolving an open problem of [Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan, SICOMP 2006]. Our RLDC construction relies on two components. First, we give a new construction of probabilistically checkable proofs of proximity (PCPPs) with $3$ queries, quasi-linear size, constant alphabet size, perfect completeness, and small soundness error. This improves upon all previous PCPP constructions, which either had a much higher query complexity or soundness close to $1$. Second, we give a query-preserving transformation from PCPPs to RLDCs. At the heart of our PCPP construction is a $2$-query decodable PCP (dPCP) with matching parameters, and our construction builds on the HDX-based PCP of [Bafna, Minzer, Vyas, Yun, STOC 2025] and on the efficient composition framework of [Moshkovitz, Raz, JACM 2010] and [Dinur, Harsha, SICOMP 2013]. More specifically, we first show how to use the HDX-based construction to get a dPCP with matching parameters but a large alphabet size, and then prove an appropriate composition theorem (and related transformations) to reduce the alphabet size in dPCPs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Alphabet is mostly a collection of companies. This newer Google is a bit slimmed down, with the companies that are pretty far afield of our main internet products contained in Alphabet instead.
abc.xyz/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员