Clustering algorithms are used extensively in data analysis for data exploration and discovery. Technological advancements lead to continually growth of data in terms of volume, dimensionality and complexity. This provides great opportunities in data analytics as the data can be interrogated for many different purposes. This however leads challenges, such as identification of relevant features for a given task. In supervised tasks, one can utilise a number of methods to optimise the input features for the task objective (e.g. classification accuracy). In unsupervised problems, such tools are not readily available, in part due to an inability to quantify feature relevance in unlabeled tasks. In this paper, we investigate the sensitivity of clustering performance noisy uncorrelated variables iteratively added to baseline datasets with well defined clusters. We show how different types of irrelevant variables can impact the outcome of a clustering result from $k$-means in different ways. We observe a resilience to very high proportions of irrelevant features for adjusted rand index (ARI) and normalised mutual information (NMI) when the irrelevant features are Gaussian distributed. For Uniformly distributed irrelevant features, we notice the resilience of ARI and NMI is dependent on the dimensionality of the data and exhibits tipping points between high scores and near zero. Our results show that the Silhouette Coefficient and the Davies-Bouldin score are the most sensitive to irrelevant added features exhibiting large changes in score for comparably low proportions of irrelevant features regardless of underlying distribution or data scaling. As such the Silhouette Coefficient and the Davies-Bouldin score are good candidates for optimising feature selection in unsupervised clustering tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
23+阅读 · 2021年12月19日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
26+阅读 · 2018年9月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员