Typically, metadata of images are stored in a specific data segment of the image file. However, to securely detect changes, data can also be embedded within images. This follows the goal to invisibly and robustly embed as much information as possible to, ideally, even survive compression. This work searches for embedding principles which allow to distinguish between unintended changes by lossy image compression and malicious manipulation of the embedded message based on the change of its perceptual or robust hash. Different embedding and compression algorithms are compared. The study shows that embedding a message via integer wavelet transform and compression with Karhunen-Loeve-transform yields the best results. However, it was not possible to distinguish between manipulation and compression in all cases.


翻译:通常情况下, 图像元数据存储在图像文件的特定数据部分中。 但是, 为了安全地检测变化, 数据也可以嵌入到图像中 。 这遵循了将尽可能多的信息隐蔽和牢牢地嵌入到图像中的目标, 以便尽可能地( 理想地)甚至保存到压缩中。 这项工作搜索嵌入原则, 从而区分通过丢失图像压缩和恶意操纵内嵌信息而发生的意外变化, 其依据是感知性或强健的散列的变化。 比较了不同的嵌入和压缩算法 。 研究表明, 通过整形波盘变换和压缩将信息嵌入Karhunen- Loev- Transformat 和Karhunen- Loeve- Transform, 都会产生最佳结果 。 但是, 无法区分所有情况下的操纵和压缩 。</s>

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员