A spanner of a graph is a subgraph that preserves lengths of shortest paths up to a multiplicative distortion. For every $k$, a spanner with size $O(n^{1+1/k})$ and stretch $(2k+1)$ can be constructed by a simple centralized greedy algorithm, and this is tight assuming Erd\H{o}s girth conjecture. In this paper we study the problem of constructing spanners in a local manner, specifically in the Local Computation Model proposed by Rubinfeld et al. (ICS 2011). We provide a randomized Local Computation Agorithm (LCA) for constructing $(2r-1)$-spanners with $\tilde{O}(n^{1+1/r})$ edges and probe complexity of $\tilde{O}(n^{1-1/r})$ for $r \in \{2,3\}$, where $n$ denotes the number of vertices in the input graph. Up to polylogarithmic factors, in both cases, the stretch factor is optimal (for the respective number of edges). In addition, our probe complexity for $r=2$, i.e., for constructing a $3$-spanner, is optimal up to polylogarithmic factors. Our result improves over the probe complexity of Parter et al. (ITCS 2019) that is $\tilde{O}(n^{1-1/2r})$ for $r \in \{2,3\}$. Both our algorithms and the algorithms of Parter et al. use a combination of neighbor-probes and pair-probes in the above-mentioned LCAs. For general $k\geq 1$, we provide an LCA for constructing $O(k^2)$-spanners with $\tilde{O}(n^{1+1/k})$ edges using $O(n^{2/3}\Delta^2)$ neighbor-probes, improving over the $\tilde{O}(n^{2/3}\Delta^4)$ algorithm of Parter et al. By developing a new randomized LCA for graph decomposition, we further improve the probe complexity of the latter task to be $O(n^{2/3-(1.5-\alpha)/k}\Delta^2)$, for any constant $\alpha>0$. This latter LCA may be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月29日
Arxiv
0+阅读 · 2023年8月28日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年8月29日
Arxiv
0+阅读 · 2023年8月28日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员