We show that the first-order theory of Sturmian words over Presburger arithmetic is decidable. Using a general adder recognizing addition in Ostrowski numeration systems by Baranwal, Schaeffer and Shallit, we prove that the first-order expansions of Presburger arithmetic by a single Sturmian word are uniformly $\omega$-automatic, and then deduce the decidability of the theory of the class of such structures. Using an implementation of this decision algorithm called Pecan, we automatically reprove many classical theorems about Sturmian words in seconds, and are able to obtain new results about antisquares and antipalindromes in characteristic Sturmian words


翻译:我们展示了比普雷斯堡算术的Sturmian单词比普雷斯堡算术第一级理论是可分的。我们用一个一般补充器来确认Baranwal、Schaeffer和Shalit在Ostrowski计算系统中添加了Baranwal、Schaeffer和Shalit,我们证明,用一个单一的Sturmian单词来增加普雷斯堡计算法的第一阶次的扩展是统一的$\omega$自动的,然后推断出这类结构等级理论的可分性。我们通过执行这个称为Pecan的决定算法,在几秒钟内自动地对许多关于Sturmian单词的古典理论进行重新验证,并且能够从典型的Sturmian单词中获得关于反海藻和抗海平原的新结果。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月16日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关主题
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员