The present paper offers, in its first part, a unified approach for the derivation of families of inequalities for set functions which satisfy sub/supermodularity properties. It applies this approach for the derivation of information inequalities with Shannon information measures. Connections of the considered approach to a generalized version of Shearer's lemma, and other related results in the literature are considered. Some of the derived information inequalities are new, and also known results (such as a generalized version of Han's inequality) are reproduced in a simple and unified way. In its second part, this paper applies the generalized Han's inequality to analyze a problem in extremal graph theory. This problem is motivated and analyzed from the perspective of information theory, and the analysis leads to generalized and refined bounds. The two parts of this paper are meant to be independently accessible to the reader.


翻译:本文件第一部分提出了一种统一的方法,用以计算满足亚/超模式特性的既定功能的不平等家庭,用香农信息措施来分析信息不平等,用香农信息措施来分析信息不平等,考虑对希勒勒勒勒勒姆马的通俗版的研究方法的关联,以及文献中的其他相关结果,一些衍生的信息不平等是新的,还以简单统一的方式复制已知的结果(如汉氏不平等的通俗版),第二部分运用普通汉的不平等来分析一个问题,从信息理论的角度对该问题进行激励和分析,分析导致普遍和完善的界限,这两部分旨在让读者可以独立查阅。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Constrained Submodular Optimization for Vaccine Design
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员