Reinforcement learning (RL) is one of the three basic paradigms of machine learning. It has demonstrated impressive performance in many complex tasks like Go and StarCraft, which is increasingly involved in smart manufacturing and autonomous driving. However, RL consistently suffers from the exploration-exploitation dilemma. In this paper, we investigated the problem of improving exploration in RL and introduced the intrinsically-motivated RL. In sharp contrast to the classic exploration strategies, intrinsically-motivated RL utilizes the intrinsic learning motivation to provide sustainable exploration incentives. We carefully classified the existing intrinsic reward methods and analyzed their practical drawbacks. Moreover, we proposed a new intrinsic reward method via R\'enyi state entropy maximization, which overcomes the drawbacks of the preceding methods and provides powerful exploration incentives. Finally, extensive simulation demonstrated that the proposed module achieve superior performance with higher efficiency and robustness.


翻译:强化学习(RL)是机器学习的三个基本范例之一,在Go和StarCraft等许多复杂任务中表现出令人印象深刻的表现,Go和StarCraft越来越多地参与智能制造和自主驾驶。然而,RL始终受到勘探-开发困境的困扰。在本文中,我们调查了改进RL勘探的问题,并引入了具有内在动机的RL。与传统的勘探战略形成鲜明对比的是,具有内在动机的RL利用内在学习动力提供可持续勘探奖励。我们仔细分类了现有的内在奖励方法并分析了其实际缺点。此外,我们通过R\'enyi州温和最大化提出了新的内在奖励方法,克服了先前方法的缺陷,提供了强有力的勘探奖励。最后,广泛的模拟表明,拟议的模块以更高的效率和强健度实现了优异性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2021年12月8日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员