Mobile edge computing (MEC) enables resource-limited IoT devices to complete computation-intensive or delay-sensitive task by offloading the task to adjacent edge server deployed at the base station (BS), thus becoming an important technology in 5G and beyond. Due to channel occlusion, some users may not be able to access the computation capability directly from the BS. Confronted with this issue, many other devices in the MEC system can serve as cooperative nodes to collect the tasks of these users and further forward them to the BS. In this paper, we study a MEC system in which multiple users continuously generate the tasks and offload the tasks to the BS through a cooperative node. As the tasks are continuously generated, users should simultaneously execute the task generation in the current time frame and the task offloading of the last time frame, i.e. the task is processed in a streaming model. To optimize the power consumption of the users and the cooperative node for finishing these streaming tasks, we investigate the duration of each step in finishing the tasks together with multiuser offloading ratio and bandwidth allocation within two cases: the BS has abundant computation capacity (Case I) and the BS has limited computation capacity (Case II). For both cases, the formulated optimization problems are nonconvex due to fractional structure of the objective function and complicated variable coupling. To address this issue, we propose optimal solution algorithm with low complexity. Finally, simulation is carried out to verify the effectiveness of the proposed methods and reveal the performance of the considered system.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员