Recent works have applied the Proximal Policy Optimization (PPO) to the multi-agent cooperative tasks, such as Independent PPO (IPPO); and vanilla Multi-agent PPO (MAPPO) which has a centralized value function. However, previous literature shows that MAPPO may not perform as well as Independent PPO (IPPO) and the Fine-tuned QMIX on Starcraft Multi-Agent Challenge (SMAC). MAPPO-Feature-Pruned (MAPPO-FP) improves the performance of MAPPO by the carefully designed agent-specific features, which is is not friendly to algorithmic utility. By contrast, we find that MAPPO faces the problem of \textit{The Policies Overfitting in Multi-agent Cooperation(POMAC)}, as they learn policies by the sampled shared advantage values. Then POMAC may lead to updating the multi-agent policies in a suboptimal direction and prevent the agents from exploring better trajectories. In this paper, to solve the POMAC problem, we propose two novel policy perturbation methods, i.e, Noisy-Value MAPPO (NV-MAPPO) and Noisy-Advantage MAPPO (NA-MAPPO), which disturb the advantage values via random Gaussian noise. The experimental results show that our methods outperform the Fine-tuned QMIX, MAPPO-FP, and achieves SOTA on SMAC without agent-specific features. We open-source the code at \url{https://github.com/hijkzzz/noisy-mappo}.


翻译:最近的著作应用了Proximal政策优化(PPO)来完成多试剂合作任务,如独立PPO(IPPO)和具有集中价值功能的香草多试PPO(MAPPO),然而,以前的文献表明,MAPO可能无法同时执行独立PPO(IPPO)和关于星际手工业多点挑战的微调 QMIX(SMAAC) 。MAPO-Fat-Pruned(MAPPPO-PF)(MAP-FP)(MAP-PO-POP-PO-POPO-POPO-POPI) 改进了MAPPPO(IMA-MAPO-MAL) 的开放性能。在本文中,我们提出了两种新颖的政策,即不使用SOTIPO-MAPO-MA(NOPO-MAPA-MAPA-NOI-MAPA-MAPA-NOPA-MAPO-MAPO-MAPO-MALA-MAPO-MAPA-MAPO-MAPOA-S-NA-S-MAPO-NA-MAPOA-MAPO-MAPOA-MAPO-MAPO-S-S-S-MAPO-S-MAPO-MAPO-MAPO-MAPO-MAPO-R_MA-S-S-S-MAPO-MAPO_MAS-MAPO_MAPO_MAS-R_MAPO_MAPO-MAPO-MAS-MAS-MAPO-MAPO-R_MAS-MAS-MAS-MAPO-R_MAS-MAPO-MAPO-MAP-MAP-MAP-MAPO_MAPO-MAPO_MAPO-MAPO-MAPA-MAP-MAPA-MAP-MAP-MAP-MAP-R_R_MAPA_MAPA_MAS-MAPA_MAPA-MAPA_MAPA_MAPA_MAPA_MAP

0
下载
关闭预览

相关内容

【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
21+阅读 · 2021年10月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
最前沿:深度解读Soft Actor-Critic 算法
极市平台
55+阅读 · 2019年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
最前沿:深度解读Soft Actor-Critic 算法
极市平台
55+阅读 · 2019年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员