Importance Sampling (IS), an effective variance reduction strategy in Monte Carlo (MC) simulation, is frequently utilized for Bayesian inference and other statistical challenges. Quasi-Monte Carlo (QMC) replaces the random samples in MC with low discrepancy points and has the potential to substantially enhance error rates. In this paper, we integrate IS with a randomly shifted rank-1 lattice rule, a widely used QMC method, to approximate posterior expectations arising from Bayesian Inverse Problems (BIPs) where the posterior density tends to concentrate as the intensity of noise diminishes. Within the framework of weighted Hilbert spaces, we first establish the convergence rate of the lattice rule for a large class of unbounded integrands. This method extends to the analysis of QMC combined with IS in BIPs. Furthermore, we explore the robustness of the IS-based randomly shifted rank-1 lattice rule by determining the quadrature error rate with respect to the noise level. The effects of using Gaussian distributions and $t$-distributions as the proposal distributions on the error rate of QMC are comprehensively investigated. We find that the error rate may deteriorate at low intensity of noise when using improper proposals, such as the prior distribution. To reclaim the effectiveness of QMC, we propose a new IS method such that the lattice rule with $N$ quadrature points achieves an optimal error rate close to $O(N^{-1})$, which is insensitive to the noise level. Numerical experiments are conducted to support the theoretical results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

指分类错误的样本数占样本总数的比例。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员