Linear regression is effective at identifying interpretable trends in a data set, but averages out potentially different effects on subgroups within data. We propose an iterative algorithm based on the randomized Kaczmarz (RK) method to automatically identify subgroups in data and perform linear regression on these groups simultaneously. We prove almost sure convergence for this method, as well as linear convergence in expectation under certain conditions. The result is an interpretable collection of different weight vectors for the regressor variables that capture the different trends within data. Furthermore, we experimentally validate our convergence results by demonstrating the method can successfully identify two trends within simulated data.


翻译:线性回归有效确定数据集中可解释的趋势,但平均显示对数据内分组的潜在不同影响。我们提议采用基于随机卡茨马尔兹(RK)法的迭代算法,自动识别数据中的分组,同时对这些组进行线性回归。我们几乎可以肯定这种方法的趋同性,以及在某些条件下预期的线性趋同性。结果是对反映数据内不同趋势的递减变量的不同重量矢量进行可解释的收集。此外,我们通过证明该方法能够成功地识别模拟数据中的两种趋势,从而实验验证我们的趋同结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员