Rate-Splitting Multiple Access (RSMA) has emerged as a potent and reliable multiple access and interference management technique in wireless communications. While downlink Multiple-Input Multiple-Ouput (MIMO) RSMA has been widely investigated, uplink MIMO RSMA has not been fully explored. In this paper, we investigate the performance of uplink RSMA in short-packet communications with perfect Channel State Information at Transmitter (CSIT) and Channel State Information at Receiver (CSIR). We propose an uplink MIMO RSMA framework and optimize both precoders and combiners with Max-Min Fairness (MMF) metric and Finite Blocklength (FBL) constraints. Due to the high coupling between precoders and combiners, we apply the Alternating Optimization (AO) to decompose the optimization problem into two subproblems. To tackle these subproblems, we propose a Successive Convex Approximation (SCA)-based approach. Additionally, we introduce a low-complexity scheme to design the decoding order at the receiver. Subsequently, the Physical (PHY)-layer of the uplink MIMO RSMA architecture is designed and evaluated using multi-user Link-Level Simulations (LLS), accounting for finite constellation modulation, finite length polar codes, message splitting, adaptive modulation and coding, and Successive Interference Cancellation (SIC) at the receiver. Numerical results demonstrate that applying RSMA in uplink MIMO with FBL constraints not only achieves MMF gains over conventional transmission schemes such as Space Division Multiple Access (SDMA) and Non-orthogonal Multiple Access (NOMA) but also exhibits robustness to network loads. The benefits of splitting messages from multiple users are also illustrated. LLS results confirm the improved max-min throughput benefits of RSMA over SDMA and NOMA.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员