Branching Rauzy induction is a two-sided form of Rauzy induction that acts on regular interval exchange transformations (IETs). We introduce an extended form of branching Rauzy induction that applies to arbitrary standard IETs, including non-minimal ones. The procedure generalizes the branching Rauzy method with two induction steps, merging and splitting, to handle equal-length cuts and invariant components respectively. As an application, we show, via a stepwise morphic argument, that all return words in the language of an arbitrary IET cluster in the Burrows-Wheeler sense.


翻译:分支Rauzy归纳法是作用于正则区间交换变换(IETs)的双向Rauzy归纳形式。本文引入一种适用于任意标准IETs(包括非极小情形)的扩展分支Rauzy归纳法。该方法通过合并与分裂两个归纳步骤,将分支Rauzy方法推广至处理等长分割与不变分量。作为应用,我们通过逐步态射论证表明:在Burrows-Wheeler意义下,任意IET语言中的所有回归词均呈现聚类特性。

0
下载
关闭预览

相关内容

【NeurIPS2023】因果成分分析
专知会员服务
41+阅读 · 2023年11月13日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2023】因果成分分析
专知会员服务
41+阅读 · 2023年11月13日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
39+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员