Unsupervised speech enhancement based on variational autoencoders has shown promising performance compared with the commonly used supervised methods. This approach involves the use of a pre-trained deep speech prior along with a parametric noise model, where the noise parameters are learned from the noisy speech signal with an expectationmaximization (EM)-based method. The E-step involves an intractable latent posterior distribution. Existing algorithms to solve this step are either based on computationally heavy Monte Carlo Markov Chain sampling methods and variational inference, or inefficient optimization-based methods. In this paper, we propose a new approach based on Langevin dynamics that generates multiple sequences of samples and comes with a total variation-based regularization to incorporate temporal correlations of latent vectors. Our experiments demonstrate that the developed framework makes an effective compromise between computational efficiency and enhancement quality, and outperforms existing methods.


翻译:与常用的监督方法相比,基于变异自动电解器的不受监督的语音增强工作表现良好,与常用的监管方法相比,这一方法涉及使用事先经过训练的深层语音以及参数噪音模型,该模型从噪音参数从噪音语音信号中学习,以预期最大化法为基础。电子步骤涉及一种棘手的潜在后遗物分布。解决这一步骤的现有算法要么基于计算重的蒙特-卡洛-马尔科夫链取样法和变异推断法,要么基于效率低的优化法。在本文件中,我们提出了一个基于Langevin动态的新方法,该方法产生多个样本序列,并带有基于全面变异的规范,以纳入潜在矢量的时间相关性。我们的实验表明,开发的框架在计算效率和增强质量之间做出了有效的折中,并且超越了现有方法。

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月20日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员