Generalizing policies to unseen scenarios remains a critical challenge in visual reinforcement learning, where agents often overfit to the specific visual observations of the training environment. In unseen environments, distracting pixels may lead agents to extract representations containing task-irrelevant information. As a result, agents may deviate from the optimal behaviors learned during training, thereby hindering visual generalization.To address this issue, we propose the Salience-Invariant Consistent Policy Learning (SCPL) algorithm, an efficient framework for zero-shot generalization. Our approach introduces a novel value consistency module alongside a dynamics module to effectively capture task-relevant representations. The value consistency module, guided by saliency, ensures the agent focuses on task-relevant pixels in both original and perturbed observations, while the dynamics module uses augmented data to help the encoder capture dynamic- and reward-relevant representations. Additionally, our theoretical analysis highlights the importance of policy consistency for generalization. To strengthen this, we introduce a policy consistency module with a KL divergence constraint to maintain consistent policies across original and perturbed observations.Extensive experiments on the DMC-GB, Robotic Manipulation, and CARLA benchmarks demonstrate that SCPL significantly outperforms state-of-the-art methods in terms of generalization. Notably, SCPL achieves average performance improvements of 14\%, 39\%, and 69\% in the challenging DMC video hard setting, the Robotic hard setting, and the CARLA benchmark, respectively.Project Page: https://sites.google.com/view/scpl-rl.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员