The emergence of large language models (LLMs) presents an unprecedented opportunity to automate construction contract management, reducing human errors and saving significant time and costs. However, LLMs may produce convincing yet inaccurate and misleading content due to a lack of domain expertise. To address this issue, expert-driven contract knowledge can be represented in a structured manner to constrain the automatic contract management process. This paper introduces the Nested Contract Knowledge Graph (NCKG), a knowledge representation approach that captures the complexity of contract knowledge using a nested structure. It includes a nested knowledge representation framework, a NCKG ontology built on the framework, and an implementation method. Furthermore, we present the LLM-assisted contract review pipeline enhanced with external knowledge in NCKG. Our pipeline achieves a promising performance in contract risk reviewing, shedding light on the combination of LLM and KG towards more reliable and interpretable contract management.


翻译:暂无翻译

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员