In bilevel optimization problems, a leader and a follower make their decisions in a hierarchy, and both decisions may influence each other. Usually one assumes that both players have full knowledge also of the other player's data. In a more realistic model, uncertainty can be quantified, e.g., using the robust optimization approach: We assume that the leader does not know the follower's objective precisely, but only up to some uncertainty set, and her aim is to optimize the worst case of the corresponding scenarios. Now the question arises how the complexity of bilevel optimization changes under the additional complications of this uncertainty. We make a further step towards answering this question by examining an easy bilevel problem. In the Bilevel Selection Problem (BSP), the leader and the follower each select some items from their own item set, while a common number of items to select in total is given, and each player minimizes the total costs of the selected items, according to different sets of item costs. We show that the BSP can be solved in polynomial time and then investigate its robust version. If the two players' item sets are disjoint, it can still be solved in polynomial time for several types of uncertainty sets. Otherwise, we show that the Robust BSP is NP-hard and present a 2-approximation algorithm and exact exponential-time approaches. Furthermore, we investigate variants of the BSP where one or both of the two players take a continuous decision. One variant leads to an example of a bilevel optimization problem whose optimal value may not be attained. For the Robust Continuous BSP, where all variables are continuous, we also develop a new approach for the setting of discrete uncorrelated uncertainty, which gives a polynomial-time algorithm for the Robust Continuous BSP and a pseudopolynomial-time algorithm for the Robust Bilevel Continuous Knapsack Problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年9月30日
Arxiv
0+阅读 · 2024年9月30日
Arxiv
0+阅读 · 2024年9月29日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年9月30日
Arxiv
0+阅读 · 2024年9月30日
Arxiv
0+阅读 · 2024年9月29日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员