In this paper, the key objects of interest are the sequential covariance matrices $\mathbf{S}_{n,t}$ and their largest eigenvalues. Here, the matrix $\mathbf{S}_{n,t}$ is computed as the empirical covariance associated with observations $\{\mathbf{x}_1,\ldots,\mathbf{x}_{ \lfloor nt \rfloor } \}$, for $t\in [0,1]$. The observations $\mathbf{x}_1,\ldots,\mathbf{x}_n$ are assumed to be i.i.d. $p$-dimensional vectors with zero mean, and a covariance matrix that is a fixed-rank perturbation of the identity matrix. Treating $\{ \mathbf{S}_{n,t}\}_{t \in [0,1]}$ as a matrix-valued stochastic process indexed by $t$, we study the behavior of the largest eigenvalues of $\mathbf{S}_{n,t}$, as $t$ varies, with $n$ and $p$ increasing simultaneously, so that $p/n \to y \in (0,1)$. As a key contribution of this work, we establish the weak convergence of the stochastic process corresponding to the sample spiked eigenvalues, if their population counterparts exceed the critical phase-transition threshold. Our analysis of the limiting process is fully comprehensive revealing, in general, non-Gaussian limiting processes. As an application, we consider a class of change-point problems, where the interest is in detecting structural breaks in the covariance caused by a change in magnitude of the spiked eigenvalues. For this purpose, we propose two different maximal statistics corresponding to centered spiked eigenvalues of the sequential covariances. We show the existence of limiting null distributions for these statistics, and prove consistency of the test under fixed alternatives. Moreover, we compare the behavior of the proposed tests through a simulation study.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2019年4月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员