Collaborative Filtering (CF) recommender models highly depend on user-item interactions to learn CF representations, thus falling short of recommending cold-start items. To address this issue, prior studies mainly introduce item features (e.g., thumbnails) for cold-start item recommendation. They learn a feature extractor on warm-start items to align feature representations with interactions, and then leverage the feature extractor to extract the feature representations of cold-start items for interaction prediction. Unfortunately, the features of cold-start items, especially the popular ones, tend to diverge from those of warm-start ones due to temporal feature shifts, preventing the feature extractor from accurately learning feature representations of cold-start items. To alleviate the impact of temporal feature shifts, we consider using Distributionally Robust Optimization (DRO) to enhance the generation ability of the feature extractor. Nonetheless, existing DRO methods face an inconsistency issue: the worse-case warm-start items emphasized during DRO training might not align well with the cold-start item distribution. To capture the temporal feature shifts and combat this inconsistency issue, we propose a novel temporal DRO with new optimization objectives, namely, 1) to integrate a worst-case factor to improve the worst-case performance, and 2) to devise a shifting factor to capture the shifting trend of item features and enhance the optimization of the potentially popular groups in cold-start items. Substantial experiments on three real-world datasets validate the superiority of our temporal DRO in enhancing the generalization ability of cold-start recommender models. The code is available at https://github.com/Linxyhaha/TDRO/.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员