With advances in generative AI, decision-making agents can now dynamically create new actions during online learning, but action generation typically incurs costs that must be balanced against potential benefits. We study an online learning problem where an agent can generate new actions at any time step by paying a one-time cost, with these actions becoming permanently available for future use. The challenge lies in learning the optimal sequence of two-fold decisions: which action to take and when to generate new ones, further complicated by the triangular tradeoffs among exploitation, exploration and $\textit{creation}$. To solve this problem, we propose a doubly-optimistic algorithm that employs Lower Confidence Bounds (LCB) for action selection and Upper Confidence Bounds (UCB) for action generation. Empirical evaluation on healthcare question-answering datasets demonstrates that our approach achieves favorable generation-quality tradeoffs compared to baseline strategies. From theoretical perspectives, we prove that our algorithm achieves the optimal regret of $O(T^{\frac{d}{d+2}}d^{\frac{d}{d+2}} + d\sqrt{T\log T})$, providing the first sublinear regret bound for online learning with expanding action spaces.
翻译:暂无翻译