We initiate the study of differentially private data-compression schemes motivated by the insecurity of the popular "Compress-Then-Encrypt" framework. Data compression is a useful tool which exploits redundancy in data to reduce storage/bandwidth when files are stored or transmitted. However, if the contents of a file are confidential then the length of a compressed file might leak confidential information about the content of the file itself. Encrypting a compressed file does not eliminate this leakage as data encryption schemes are only designed to hide the content of confidential message instead of the length of the message. In our proposed Differentially Private Compress-Then-Encrypt framework, we add a random positive amount of padding to the compressed file to ensure that any leakage satisfies the rigorous privacy guarantee of $(\epsilon,\delta)$-differential privacy. The amount of padding that needs to be added depends on the sensitivity of the compression scheme to small changes in the input, i.e., to what degree can changing a single character of the input message impact the length of the compressed file. While some popular compression schemes are highly sensitive to small changes in the input, we argue that effective data compression schemes do not necessarily have high sensitivity. Our primary technical contribution is analyzing the fine-grained sensitivity of the LZ77 compression scheme (IEEE Trans. Inf. Theory 1977) which is one of the most common compression schemes used in practice. We show that the global sensitivity of the LZ77 compression scheme has the upper bound $\mathcal{O}(W^{2/3}\log n)$ where $W\leq n$ denotes the size of the sliding window. When $W=n$, we show the lower bound $\Omega(n^{2/3}\log^{1/3}n)$ for the global sensitivity of the LZ77 compression scheme which is tight up to a sublogarithmic factor.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员