Compiler bugs pose a significant threat to safety-critical applications, and promptly as well as effectively isolating these bugs is crucial for assuring the quality of compilers. However, the limited availability of debugging information on reported bugs complicates the compiler bug isolation task. Existing compiler bug isolation approaches convert the problem into a test program mutation problem, but they are still limited by ineffective mutation strategies or high human effort requirements. Drawing inspiration from the recent progress of pre-trained Large Language Models (LLMs), such as ChatGPT, in code generation, we propose a new approach named LLM4CBI to utilize LLMs to generate effective test programs for compiler bug isolation. However, using LLMs directly for test program mutation may not yield the desired results due to the challenges associated with formulating precise prompts and selecting specialized prompts. To overcome the challenges, three new components are designed in LLM4CBI. First, LLM4CBI utilizes a program complexity-guided prompt production component, which leverages data and control flow analysis to identify the most valuable variables and locations in programs for mutation. Second, LLM4CBI employs a memorized prompt selection component, which adopts reinforcement learning to select specialized prompts for mutating test programs continuously. Third, a test program validation component is proposed to select specialized feedback prompts to avoid repeating the same mistakes during the mutation process. Compared with state-of-the-art approaches over 120 real bugs from GCC and LLVM, our evaluation demonstrates the advantages of LLM4CBI: It can isolate 69.70%/21.74% and 24.44%/8.92% more bugs than DiWi and RecBi within Top-1/Top-5 ranked results. We also demonstrate that the LLMs component used in LLM4CBI can be easily replaced while still achieving reasonable results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

编译器(Compiler),是一种计算机程序,它会将用某种编程语言写成的源代码(原始语言),转换成另一种编程语言(目标语言)。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员