Generating realistic robotic manipulation videos is an important step toward unifying perception, planning, and action in embodied agents. While existing video diffusion models require large domain-specific datasets and struggle to generalize, recent image generation models trained on language-image corpora exhibit strong compositionality, including the ability to synthesize temporally coherent grid images. This suggests a latent capacity for video-like generation even without explicit temporal modeling. We explore whether such models can serve as visual planners for robots when lightly adapted using LoRA finetuning. We propose a two-part framework that includes: (1) text-conditioned generation, which uses a language instruction and the first frame, and (2) trajectory-conditioned generation, which uses a 2D trajectory overlay and the same initial frame. Experiments on the Jaco Play dataset, Bridge V2, and the RT1 dataset show that both modes produce smooth, coherent robot videos aligned with their respective conditions. Our findings indicate that pretrained image generators encode transferable temporal priors and can function as video-like robotic planners under minimal supervision. Code is released at \href{https://github.com/pangye202264690373/Image-Generation-as-a-Visual-Planner-for-Robotic-Manipulation}{https://github.com/pangye202264690373/Image-Generation-as-a-Visual-Planner-for-Robotic-Manipulation}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员