We develop methodology for testing hypotheses regarding the slope function in functional linear regression for time series via a reproducing kernel Hilbert space approach. In contrast to most of the literature, which considers tests for the exact nullity of the slope function, we are interested in the null hypothesis that the slope function vanishes only approximately, where deviations are measured with respect to the $L^2$-norm. An asymptotically pivotal test is proposed, which does not require the estimation of nuisance parameters and long-run covariances. The key technical tools to prove the validity of our approach include a uniform Bahadur representation and a weak invariance principle for a sequential process of estimates of the slope function. Both scalar-on-function and function-on-function linear regression are considered and finite-sample methods for implementing our methodology are provided. We also illustrate the potential of our methods by means of a small simulation study and a data example.


翻译:我们通过复制内核Hilbert空间方法,为时间序列功能线性回归函数的斜坡函数制定测试方法,与大多数研究斜坡函数完全无效测试的文献不同,我们感兴趣的是空假设,即斜坡函数仅基本消失,对以美元为基值的偏差进行测量。我们建议进行一个非现时关键测试,不需要估计扰动参数和长期的常态。证明我们方法有效性的关键技术工具包括统一的巴哈杜尔代表制和对斜坡函数的测算顺序过程的微弱变化原则。考虑的是斜坡函数和功能对功能的直线回归,并提供执行我们方法的有限方法样本。我们还通过小型模拟研究和数据实例来说明我们方法的潜力。

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员