This study explores the critical role of open government data (OGD) portals in fostering transparency and collaboration between diverse stakeholders. Recognizing the challenges of usability, communication with diverse populations, and strategic value creation, this paper develops an integrated framework for evaluating OGD portal effectiveness that accommodates user diversity (regardless of their data literacy and language), evaluates collaboration and participation, and the ability of users to explore and understand the data provided through them. The framework is validated by applying it to 33 national portals across European Union and Gulf Cooperation Council (GCC) countries, as a result of which we rank OGD portals, identify some good practices that lower-performing portals can learn from, and common shortcomings. Notably, the study unveils the competitive and innovative nature of GCC OGD portals, pinpointing specific improvement areas such as multilingual support and data understandability. The findings underscore the growing trend of exposing data quality metrics and advocate for enhanced two-way communication channels between users and portal representatives. Overall, the study contributes to accelerating the development of user-friendly, collaborative, and sustainable OGD portals while addressing gaps identified in previous research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

GCC(GNU Compiler Collection,GNU 编译器套装),是一套由 GNU 开发的编程语言编译器。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员