While Large Language Models (LLMs) are increasingly applied in student-facing educational tools, their potential to directly support educators through locally deployable and customizable solutions remains underexplored. Many existing approaches rely on proprietary, cloud-based systems that raise significant cost, privacy, and control concerns for educational institutions. To address these barriers, we introduce an end-to-end, open-source framework that empowers educators using small (3B-7B parameter), locally deployable LLMs. Our system is designed for comprehensive teacher support, including customized teaching material generation and AI-assisted assessment. The framework synergistically combines Retrieval-Augmented Generation (RAG) and Context-Augmented Generation (CAG) to produce factually accurate, pedagogically-styled content. A core feature is an interactive refinement loop, a teacher-in-the-loop mechanism that ensures educator agency and precise alignment of the final output. To enhance reliability and safety, an auxiliary verifier LLM inspects all generated content. We validate our framework through a rigorous evaluation of its content generation capabilities and report on a successful technical deployment in a college physics course, which confirms its feasibility on standard institutional hardware. Our findings demonstrate that carefully engineered, self-hosted systems built on small LLMs can provide robust, affordable, and private support for educators, achieving practical utility comparable to much larger models for targeted instructional tasks. This work presents a practical blueprint for the development of sovereign AI tools tailored to the real-world needs of educational institutions.
翻译:暂无翻译