For many years, car keys have been the sole mean of authentication in vehicles. Whether the access control process is physical or wireless, entrusting the ownership of a vehicle to a single token is prone to stealing attempts. For this reason, many researchers started developing behavior-based authentication systems. By collecting data in a moving vehicle, Deep Learning (DL) models can recognize patterns in the data and identify drivers based on their driving behavior. This can be used as an anti-theft system, as a thief would exhibit a different driving style compared to the vehicle owner's. However, the assumption that an attacker cannot replicate the legitimate driver behavior falls under certain conditions. In this paper, we propose GAN-CAN, the first attack capable of fooling state-of-the-art behavior-based driver authentication systems in a vehicle. Based on the adversary's knowledge, we propose different GAN-CAN implementations. Our attack leverages the lack of security in the Controller Area Network (CAN) to inject suitably designed time-series data to mimic the legitimate driver. Our design of the malicious time series results from the combination of different Generative Adversarial Networks (GANs) and our study on the safety importance of the injected values during the attack. We tested GAN-CAN in an improved version of the most efficient driver behavior-based authentication model in the literature. We prove that our attack can fool it with an attack success rate of up to 0.99. We show how an attacker, without prior knowledge of the authentication system, can steal a car by deploying GAN-CAN in an off-the-shelf system in under 22 minutes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年7月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员