Total variation (TV) minimization is one of the most important techniques in modern signal/image processing, and has wide range of applications. While there are numerous recent works on the restoration guarantee of the TV minimization in the framework of compressed sensing, there are few works on the restoration guarantee of the restoration from partial observations. This paper is to analyze the error of TV based restoration from random entrywise samples. In particular, we estimate the error between the underlying original data and the approximate solution that interpolates (or approximates with an error bound depending on the noise level) the given data that has the minimal TV seminorm among all possible solutions. Finally, we further connect the error estimate for the discrete model to the sparse gradient restoration problem and to the approximation to the underlying function from which the underlying true data comes.


翻译:全面变异(TV)最小化是现代信号/图像处理中最重要的技术之一,具有广泛的应用范围。虽然最近有许多关于在压缩遥感框架内恢复电视最小化保障的工程,但从局部观测中恢复恢复电视最小化的工程寥寥无几。本文旨在分析从随机入境样本中恢复电视的错误。特别是,我们估计了原始原始原始数据和(或根据噪音程度与差错相近)在各种可能的解决办法中具有最低电视半调的给定数据之间的大致解决办法之间的错误。最后,我们进一步将离散模型的误差估计与稀有梯度恢复问题和基本真实数据产生的基本功能的近似值联系起来。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月12日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员