Fusion of 3D and MS imaging data has a great potential for high-throughput plant phenotyping of structural and biochemical as well as physiological traits simultaneously, which is important for decision support in agriculture and for crop breeders in selecting the best genotypes. However, lacking of 3D data integrity of various plant canopy structures and low-quality of MS images caused by the complex illumination effects make a great challenge, especially at the proximal imaging scale. Therefore, this study proposed a novel approach for adaptive data acquisition and radiometric calibration to generate high-quality 3DMPCs of plants. An efficient NBV planning method based on an UGV plant phenotyping system with a multi-sensor-equipped robotic arm was proposed to achieve adaptive data acquisition. The NeREF was employed to predict the DN values of the hemispherical reference for radiometric calibration. For NBV planning, the average total time for single plant at a joint speed of 1.55 rad/s was about 62.8 s, with an average reduction of 18.0% compared to the unplanned. The integrity of the whole-plant data was improved by an average of 23.6% compared to the fixed viewpoints alone. Compared with the ASD measurements, the RMSE of the reflectance spectra obtained from 3DMPCs at different regions of interest was 0.08 with an average decrease of 58.93% compared to the results obtained from the single-frame of MS images without 3D radiometric calibration. The 3D-calibrated plant 3DMPCs improved the predictive accuracy of PLSR for chlorophyll content, with an average increase of 0.07 in R2 and an average decrease of 21.25% in RMSE. Our approach introduced a fresh perspective on generating high-quality 3DMPCs of plants under the natural light condition, enabling more precise analysis of plant morphological and physiological parameters.


翻译:暂无翻译

0
下载
关闭预览

相关内容

数据获取是指利用一种装置,将来自各种数据源的数据自动收集到一个装置中。
专知会员服务
55+阅读 · 2020年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员