The structure of linear dependence relations between coded symbols of a linear code, irrespective of specific coefficients involved, is referred to as the {\em topology} of the code. The specification of coefficients is referred to as an {\em instantiation} of the topology. In this paper, we propose a new block circulant topology $T_{[\mu,\lambda,\omega]}(\rho)$ parameterized by integers $\rho \geq 2$, $\omega \geq 1$, $\lambda \geq 2$, and $\mu$ a multiple of $\lambda$. In this topology, the code has $\mu$ local codes with $\rho$ parity-check (p-c) constraints and a total of $\mu\rho$ p-c equations fully define the code. Next, we construct a class of block circulant (BC) codes ${\cal C}_{\text{BC}}[\mu,\lambda,\omega,\rho]$ with blocklength $n=\mu(\rho+\omega)$, dimension $k=\mu\omega$ that instantiate $T_{[\mu,\lambda,\omega]}(\rho)$. Every local code of ${\cal C}_{\text{BC}}[\mu,\lambda,\omega,\rho]$ is a $[\rho+\lambda\omega,\lambda\omega,\rho+1]$ generalized Reed-Solomon (RS) code. The overlap between supports of local codes helps to enhance the minimum distance $\rho+1$ to $2\rho+1$, without compromising much on the rate. We provide an efficient, parallelizable decoding algorithm to correct $2\rho$ erasures when $\lambda=2$. Finally, we illustrate that the BC codes serve as a viable alternative to 2D RS codes in protocols designed to tackle blockchain networks' data availability (DA) problem. In these protocols, every node in a network of light nodes randomly queries symbols from a codeword stored in full nodes and verifies them using a cryptographic commitment scheme. For the same performance in tackling the DA problem, the BC code requires querying a smaller number of symbols than a comparable 2D RS code for a fixed high rate. Furthermore, the number of local codes in the BC code is typically smaller, yielding a reduction in the complexity of realizing the commitment scheme.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员