Static Random-Access Memory (SRAM) yield analysis is essential for semiconductor innovation, yet research progress faces a critical challenge: the large gap between simplified academic models and the complexities observed in practice. The lack of open, higher-fidelity benchmarks has hindered reproducibility and transferability, as promising academic techniques often fail to carry over to more realistic settings. We present OpenYield, an open-source ecosystem that aims to narrow this gap through three contributions: (i) An SRAM circuit generator that explicitly incorporates second-order effects (interconnect/line parasitics, inter-cell leakage coupling, and peripheral-circuit variations) that are commonly omitted in academic studies. (ii) A standardized evaluation platform with a simple interface and baseline yield-analysis implementations to enable fair comparisons and reproducible research on these higher-fidelity circuits. (iii) An optimization platform for transistor-level sizing under these models, supporting reproducible studies of robustness/efficiency trade-offs. OpenYield aims to foster more reproducible and transferable progress in SRAM-yield research. The framework is publicly available at https://github.com/ShenShan123/OpenYield


翻译:静态随机存取存储器(SRAM)的良率分析对于半导体创新至关重要,然而研究进展面临一个关键挑战:简化的学术模型与实际观察到的复杂性之间存在巨大差距。缺乏开放、高保真度的基准测试阻碍了研究的可复现性和可迁移性,因为许多有前景的学术技术往往无法在更现实的场景中有效应用。我们提出了OpenYield,这是一个开源生态系统,旨在通过以下三个贡献来缩小这一差距:(i)一个SRAM电路生成器,明确纳入了学术研究中常被忽略的二阶效应(互连线寄生效应、单元间泄漏耦合以及外围电路变异)。(ii)一个标准化的评估平台,具有简洁的接口和基线良率分析实现,以支持在这些高保真度电路上进行公平比较和可复现的研究。(iii)一个在这些模型下进行晶体管级尺寸优化的平台,支持对鲁棒性与效率权衡的可复现研究。OpenYield旨在促进SRAM良率研究领域更具可复现性和可迁移性的进展。该框架已在https://github.com/ShenShan123/OpenYield公开提供。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员