Table-and-text hybrid question answering (HybridQA) is a widely used and challenging NLP task commonly applied in the financial and scientific domain. The early research focuses on migrating other QA task methods to HybridQA, while with further research, more and more HybridQA-specific methods have been present. With the rapid development of HybridQA, the systematic survey is still under-explored to summarize the main techniques and advance further research. So we present this work to summarize the current HybridQA benchmarks and methods, then analyze the challenges and future directions of this task. The contributions of this paper can be summarized in three folds: (1) first survey, to our best knowledge, including benchmarks, methods and challenges for HybridQA; (2) systematic investigation with the reasonable comparison of the existing systems to articulate their advantages and shortcomings; (3) detailed analysis of challenges in four important dimensions to shed light on future directions.


翻译:表格和文本混合回答问题(HybridQA)是一项广泛使用和具有挑战性的NLP任务,通常在财政和科学领域应用。早期研究的重点是将其他质量保证任务方法迁移到混合QA,同时随着进一步的研究,出现了越来越多的混合QA特定方法。随着混合QA的迅速发展,系统调查仍未得到充分探讨,以总结主要技术和推进进一步的研究。因此,我们介绍这项工作,总结当前混合QA的基准和方法,然后分析这项任务的挑战和未来方向。本文件的贡献可以分为三个部分:(1) 首次调查,了解我们的最佳知识,包括混合QA的基准、方法和挑战;(2) 系统调查,对现有系统系统系统系统进行合理的比较,以阐明其优点和缺点;(3) 详细分析四个重要方面的挑战,以说明今后的方向。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
67+阅读 · 2022年4月13日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员