Estimating the ground state energy of a local Hamiltonian is a central problem in quantum chemistry. In order to further investigate its complexity and the potential of quantum algorithms for quantum chemistry, Gharibian and Le Gall (STOC 2022) recently introduced the guided local Hamiltonian problem (GLH), which is a variant of the local Hamiltonian problem where an approximation of a ground state (which is called a guiding state) is given as an additional input. Gharibian and Le Gall showed quantum advantage (more precisely, BQP-completeness) for GLH with $6$-local Hamiltonians when the guiding state has fidelity (inverse-polynomially) close to $1/2$ with a ground state. In this paper, we optimally improve both the locality and the fidelity parameter: we show that the BQP-completeness persists even with 2-local Hamiltonians, and even when the guiding state has fidelity (inverse-polynomially) close to 1 with a ground state. Moreover, we show that the BQP-completeness also holds for 2-local physically motivated Hamiltonians on a 2D square lattice or a 2D triangular lattice. Beyond the hardness of estimating the ground state energy, we also show BQP-hardness persists when considering estimating energies of excited states of these Hamiltonians instead. Those make further steps towards establishing practical quantum advantage in quantum chemistry.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员