Protecting user privacy is a major concern for many machine learning systems that are deployed at scale and collect from a diverse set of population. One way to address this concern is by collecting and releasing data labels in an aggregated manner so that the information about a single user is potentially combined with others. In this paper, we explore the possibility of training machine learning models with aggregated data labels, rather than individual labels. Specifically, we consider two natural aggregation procedures suggested by practitioners: curated bags where the data points are grouped based on common features and random bags where the data points are grouped randomly in bag of similar sizes. For the curated bag setting and for a broad range of loss functions, we show that we can perform gradient-based learning without any degradation in performance that may result from aggregating data. Our method is based on the observation that the sum of the gradients of the loss function on individual data examples in a curated bag can be computed from the aggregate label without the need for individual labels. For the random bag setting, we provide a generalization risk bound based on the Rademacher complexity of the hypothesis class and show how empirical risk minimization can be regularized to achieve the smallest risk bound. In fact, in the random bag setting, there is a trade-off between size of the bag and the achievable error rate as our bound indicates. Finally, we conduct a careful empirical study to confirm our theoretical findings. In particular, our results suggest that aggregate learning can be an effective method for preserving user privacy while maintaining model accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月2日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员